Sunday, September 7, 2014

Electric Universe: HI regions, the CMB, and Critical Ionization Velocity

It took a bit longer to complete the (preliminary) reading for this response to the claims by Chris Reeve in (Dad2059: The Electric Universe & Strawmen). It is yet another follow-on to Mr. Reeve's earlier claims supporting the Electric Universe (see Challenges for Electric Universe 'Theorists'...), discussed (Pseudoscience and 'World-View') and (Electric Universe: More Confusing Claims from the EU 'Worldview').

I may have a more detailed response for a future post, but for now, we should note some aspects of this which Mr. Reeve doesn't tell you, particularly his limited understanding of HI regions and critical ionization velocity (CIV).

On the HI Hyperfine Transition... 

HI is the astronomers' designation for neutral atomic hydrogen gas. Ionized atomic hydrogen (a single proton) is often designated HII. There are similar notations for the ionization state of other elements. Wikipedia: Hydrogen Line

A couple of interesting notes about HI relevant to astronomy. The HI line with a 21 cm wavelength (frequency =1420 MHz) is due to a transition in the energy level of the neutral hydrogen atom that occurs when the spin of the electron and proton switch from parallel to anti-parallel, which corresponds to a lower energy state. Two particularly important things to note, relevant to Electric Universe (EU) claims:
  1. The existence of this transition was predicted theoretically from quantum mechanics, some years before it was actually observed. Again, this success was thanks to the power of mathematics with a reliable experimental and theoretical framework. 
  2. With a transition rate on the order of 10^-15 per second, the state has a lifetime of about 10 million years. Any collisions with other atoms in that time frame can change the atomic state, so the 21 cm HI emission is limited to regions of extremely low temperature and/or density, so that there is a LONG time between collisions which can reset the atomic state so the photon will not be emitted. This long lifetime means this emission of 21 cm radiation has never been observed in the laboratory. Since EU advocates often like to claim only laboratory-verified phenomena should be valid science (which appears to include almost everything except neutrino oscillations), it's rather hypocritical when they resort to the 21cm radiation. 
Mr. Reeve's ignorance, or is it evasion, of these facts, is peculiar, but not surprising...

So all-in-all, it's rather funny when EU supporters are backed so far into a corner that they have to pull out claims related to HI observations, as dependence on them is evidence against many of their claimed underlying beliefs about how science actually works.

Critical Ionization Velocity or CIV 

Now for CIV, or Critical Ionization Velocity (not to be confused with +3 ionized carbon, occasionally also written as CIV using the notation described above). CIV is a plasma effect originally predicted by Hannes Alfven. It is the relative velocity between a plasma and neutral gas at which the neutral gas starts to ionize. To date, it has only been clearly identified under laboratory conditions, but not under conditions in space. (Wikipedia: Critical Ionization Velocity)

Over the past decade or so, Dr. Verschuur has hypothesized a correlation between HI 21 cm emission regions above the disk of the Milky Way galaxy and 'hot spots' in the WMAP ILC map (NASA: Wilkinson ILC map) may indicate some type of electromagnetically-driven structure.

Two aspects of this apparent correlation of particular interest to Electric Universe supporters are
  1. the speculation that this correlation is evidence for a cosmic-scale CIV effect and therefore cosmic-scale electric currents. 
  2. that these correlations with the emission from the cosmic microwave background (CMB) is evidence against Big-Bang cosmology. 
While Mr. Reeve uses Dr. Verschuur's work to promote a new edition of Peratt's "Physics of the Plasma Universe", Dr. Verschuur has published much of this work in the astrophysics literature.

Problems for Electric Universe/Plasma Cosmology Supporters 

As Verschuur notes in all his papers on this topic (References 8, 11, 12, 13,14,15 listed below), these 'anomalies' are LOCAL to our galaxy (with estimated distances between 200 and 4000 parsecs) and fairly small scale, but perhaps far above the galactic disk. Many of the neutral hydrogen regions have average velocities that are negative, implying the regions are moving towards the observer (blue-shifted). Therefore, they are not evidence for the Peratt galaxy model.

Other authors have speculated on the possibility of CIV in the Magellanic Stream (Reference 9). The Magellanic stream (Wikipedia) is a path of hydrogen gas that stretches from the Magellanic galaxies across a large part of the sky - apparently a trail left by a tidal interaction of the Magellanic galaxies in the distant past. In this case, H-alpha emission is found at boundary of high-velocity clouds. This is not surprising, as flow velocities sufficient to produce ionization provide more than enough energy to generate other atomic excitations - and we would expect them from more cosmologically abundant elements like hydrogen and helium. This paper makes two important points relevant to this particular discussion:
  1. CIV does not require an electric current - a neutral plasma at high relative velocity in magnetic field colliding with another neutral gas cloud can have same effect. 
  2. Because the energy transfer to the atoms are enough to ionize them, it is also sufficient to activate additional atomic spectral lines. Therefore, additional emission, particularly atomic excitations, should be visible.
Here's just some of the problems (some noted by Dr. Verschuur himself) with the CIV interpretation:
  1. Dr. Verschuur does not find a similar H-alpha correlation for his observations. There are poor correlations of this emission with X-rays (Reference 14, figure 4) and H-alpha (Reference 14,  figure 6b) an issue which he notes in (Reference 15) and has not resolved.
  2. As noted by other researchers (References 6, 10), the observable 'signature' of CIV may be easy to confuse with other processes. In addition, the CIV effect itself is probably a combination of more fundamental processes which may dominate the physical system at any given time. CIV might be a useful term in laboratory cases, but it may be too poorly defined in a space environment, which might explain why it has yet to be clearly identified in a space environment (see A comparison between laboratory and space experiments on Alfven’s CIV effect.).
  3. I have yet to find a rigorous examination of CIV in theory or laboratory which has examined the SPECTRAL signature of the process (References 2, 3, 4, 5, 6, & 10). Closest to spectral signature is in Reference 7 (figure 7, 59). The research papers include lots of examinations of voltages, currents, plasma frequencies, which are readily measured in laboratories, but little as to what the astronomer can observe and measure with tools such as spectroscopes and broad frequency range imaging. Therefore, the interpretation based on the width of gaussian line profiles are not necessarily clear signatures of the process.
  4. That said, it is easy to understand how the 50 km/s profile might be imprinted on HI emission, as any hydrogen atoms at higher speeds would have a higher probability of being collisionally de-excited from the hyperfine state so only the atoms at the critical speed and lower will have a chance to emit 21cm radiation. But just how does the velocity profile for these other atoms: helium, carbon, etc. get 'imprinted' on the velocity profile of the HI? Any collisional or electromagnetic interaction which accelerates the hydrogen atom to these speeds risks moving the atom into a state where 21 cm photons would not be emitted. Without some clear answer to (3) above, this is essentially impossible to answer.
  5. Probably related to (4) above, generally, the relative amplitudes of the elements features identified by Dr. Verschuur should be roughly proportional to the abundances of the specific chemical element(s). While it's reasonable to identify hydrogen and helium, where helium is about 1/10 as abundant as hydrogen (in terms of fraction of atoms) and might have 1/10 the amplitude of the hydrogen signal, it's a little more difficult to identify the heavier elements whose abundance are lower by a factor of 100. To justify this, there must something enhancing the signal of the heavier elements out of proportion to their abundance (unless one wants to claim the atomic abundances are indeed significantly higher in these regions, which generates a whole additional set of problems).
  6. Invoking Marklund convection raises the same problems as noted before (Electric Universe: More Confusing Claims from the EU 'Worldview'). No one has yet demonstrated what we would actually observe and measure for this configuration, or even what could generate the current claimed. Again, Electric Universe advocates think electric currents just spring up anywhere they need them, as if by magic. Since some EU supporter will no doubt point to various planetary nebulae with cylindrical structure, it should be noted that all observed bi-polar flows have been measured OUTWARD from the central object, not through it (Wikipedia: Bipolar outflow) so Marklund convection can't apply in these flows.
Dr. Verschuur has far from demonstrated that these apparent correlations between HI emission & the CMB bright spots correspond to CIV, especially considering the problem that there is significant offsets between the emission regions.

Recognizing a number of the problems noted above, in Reference 15, Dr. Verschuur suggests the possibility of these regions being signs of magnetic reconnection (an option which I suspect Electric Universe supporters would also express disapproval: See (Non-) Electric Universe News for Summer 2013, On Magnetic Reconnection and "Discharges").

Two-Dimensional Thinking in a Three (or Four)-Dimensional Universe... 

In the papers discussed, Dr. Verschuur is still doing a 2-D analysis of a 3-D environment, a practice which is fraught with peril.

I contrast this with the analysis Dr. Verschuur presented in another 2013 paper (High-resolution Observations and the Physics of High-velocity Cloud A0) where he explicitly reports an examination of the hypothesized filament in (l,b,v) space - projecting a helix, and it's proposed velocity profile, on the sky. He describes how he derives hypothesized currents, and the magnetic fields they would generate. He even presents how higher-resolution measurements of magnetic fields from this region may test this hypothesis. Here, Dr. Verschuur clearly states his input assumptions and explores a number of the consequences, and even proposes observations to test it.   Why wasn't this type of analysis done with the proposed Marklund convection configuration which Verschuur mentions in the CIV papers?

Other astronomers are doing a more complete analysis with this type of 2-D images combined with line-of-sight spectra and it is an important tool for extracting more complete information. See NASA: Astronomers Bring The Third Dimension To A Doomed Star's Outburst

Another example of how human perception can lead to flawed conclusions is illustrated by Halton Arp's 3-D intuition in regard to discordant redshifts. All of Dr. Arp's probability arguments had simple geometric explanations in 3-D (Discord for Discordant Redshifts. I., Discord for Discordant Redshifts. II.) and the chance alignments were far more probable than he realized.

Electric Universe Advocates Fail Again 

The CIV explanation for these correlations raise far more problems than it solves. Mr. Reeve's suggestion that this analysis represents a significant mathematical demonstration of the success of Electric Universe ideas in astronomy doesn't cut it. Again, the literature and the experiments are out there for anyone to find - but Mr. Reeve apparently did not bother himself to learn the facts about CIV.

Electric Universe continues its attempts to appropriate the work of legitimate researchers as 'theirs' while ignoring the long history of electric fields and currents in astronomy (365 Days of Astronomy: The Electric Universe).

References 

  1.  C. K. Goertz, S. Machida, and R. A. Smith. An asymptotic state of the critical ionization velocity phenomenon. Journal of Geophysical Research, 90:12230–12234, December 1985. doi: 10.1029/JA090iA12p12230. 
  2. S. Machida and C. K. Goertz. A simulation study of the critical ionization velocity process. Journal of Geophysical Research, 91:11965–11976, November 1986. doi: 10.1029/JA091iA11p11965. 
  3. S. Machida and C. K. Goertz. The electromagnetic effect on the critical ionization velocity process. Journal of Geophysical Research, 93:11495–11506, October 1988. doi: 10.1029/JA093iA10p11495.
  4. C. K. Goertz, G. Lu, and S. Machida. On the theory of CIV. Advances in Space Research, 10:33–45, 1990. doi: 10.1016/0273-1177(90)90271-Z. 
  5. R. B. Torbert. Review of critical velocity experiments in the ionosphere. Advances in Space Research, 10: 47–58, 1990. doi: 10.1016/0273-1177(90)90272-2. 
  6. N. Brenning. A comparison between laboratory and space experiments on Alfven’s CIV effect. IEEE Transactions on Plasma Science, 20:778–786, December 1992. doi: 10.1109/27.199528. 
  7. N. Brenning. Review of the CIV phenomenon. Space Science Reviews, 59:209–314, February 1992. doi: 10.1007/BF00242088. 
  8. G. L. Verschuur and A. L. Peratt. Galactic Neutral Hydrogen Emission Profile Structure. Astronomical Journal, 118:1252–1267, September 1999. doi: 10.1086/300998. 
  9. C. Konz, H. Lesch, G. T. Birk, and H. Wiechen. The Critical Velocity Effect as a Cause for the Hα Emission from the Magellanic Stream. Astrophysical Journal, 548:249–252, February 2001. doi: 10.1086/318690. 
  10. S. T. Lai. A review of critical ionization velocity. Reviews of Geophysics, 39:471–506, November 2001. doi: 10.1029/2000RG000087. 
  11.  A. L. Peratt and G. L. Verschuur. Observation of the CIV effect in interstellar clouds: a speculation on the physical mechanism for their existence. IEEE Transactions on Plasma Science, 28:2122–2127, December 2000. doi: 10.1109/27.902239. 
  12. G. L. Verschuur. On the Critical Ionization Velocity Effect in Interstellar Space and Possible Detection of Related Continuum Emission. IEEE Transactions on Plasma Science, 35:759–766, August 2007. doi: 10.1109/TPS.2007.898037. 
  13. G. L. Verschuur and J. T. Schmelz. A Pervasive Broad Component in H I Emission Line Profiles: Temperature, Turbulence, or a Helium Signature? Astronomical Journal, 139:2410–2424, June 2010. doi: 10.1088/0004-6256/139/6/2410. 
  14.  G. L. Verschuur. On the Apparent Associations Between Interstellar Neutral Hydrogen Structure and (WMAP) High-frequency Continuum Emission. Astrophysical Journal, 711:1208–1228, March 2010. doi: 10.1088/0004-637X/711/2/1208. 
  15. G. L. Verschuur. Interacting Galactic Neutral Hydrogen Filaments and Associated High-frequency Continuum Emission. Astrophysical Journal, 768:181, May 2013. doi: 10.1088/0004-637X/768/2/181. 
  16. G. L. Verschuur. High-resolution Observations and the Physics of High-velocity Cloud A0. Astrophysical Journal, 766:113, April 2013. doi: 10.1088/0004-637X/766/2/113.

8 comments:

Anonymous said...

I think it is an assumption that people who discuss the Electric Universe are necessarily "supporters". Like any scientists they are interested in the facts, the evidence, and the conclusions drawn.

Anonymous said...

You write that "Critical Ionization Velocity (CIV) .. has only been clearly identified under laboratory conditions, but not under conditions in space."

The Wikipedia article notes that space shuttle Discovery (STS-39), did a CIV experiment in 1991. Are you able to find whether any results were published?

The YouTube STS-39 post flight conference, http://youtu.be/gr8r_nYg86o notes that of the four gases released, the nitrous oxide (NO) was the only one that was visible. Since NO is colorless, doesn't this suggest that it must have ionized in order to have be seen?

W.T."Tom" Bridgman said...

To Anonymous:

Note that I do not describe Dr. Verschuur as an Electric Universe (EU) supporter, only that EU supporters have invoked his work as evidence for their claims.

There are numerous scientists doing legitimate research which includes electric fields in space, as I have documented (see real electric universe). I do not include them as electric universe 'supporters'. However, electric universe supporters have often tried to 'hijack' the work of these researchers as 'theirs'. I've found threads in the Thunderbolts forum complaining that the such researchers failed to credit EU for their work!

One researcher I spoke to at the 2014 AAS winter meeting complained about his work is being touted by EU as support for their claims and he was actually contacting some of the EU sites to have his name removed!

You'll note that on this blog, I point out the behavior noted above, as well as EU claims that have long been demonstrated wrong (electrically-powered stars, Peratt's galaxy model, claims that comet visible glow is an electric discharge phenomena, etc.). Yet EU 'theorists' continue their support of these claims based on their so-called "facts, the evidence, and the conclusions drawn." But then, you'll see similar support by relativity deniers, Biblical Geocentrists, and young-Earth creationists, often using the same "facts" and "evidence".

W.T."Tom" Bridgman said...

The shuttle experiment is discussed in the Lai 2001 reference.

A 'glow' is not automatically evidence of ionization. I regard this as one of the 'Big Lies' perpetrated by Electric Universe 'theorists'.

In the case of atomic emission, it can just mean there was a transition between two *bound* energy states where the emitted photon is in the optical wavelength range. The red 'glow' you see in a hydrogen discharge tube is not due to ionization, though ionization is taking place in the tube, but due to spectral lines emitted between bound electron states, dominated by the Hydrogen-alpha line. I'm sure there are other combinations of conditions where you would just see the emission between bound states with negligible or no ionization.

One of the more frustrating things about the CIV experiments I've read is that few of the researchers bring a spectroscope. A spectroscope can be used to identify which atoms are being excited and which are being ionized (as the spectra of ionized atoms are different from their neutral counterparts).

Another item mentioned in Lai2001 is that in laboratory experiments with *mixes* of gases, you don't see multiple CIVs for each element, but rather a kind of 'weighted average' of the constituent velocities, depending on the level of ionization.

Anonymous said...

You wrote: "A 'glow' is not automatically evidence of ionization. I regard this as one of the 'Big Lies' perpetrated by Electric Universe 'theorists'."

I'm quiet uncomfortable about people calling ideas "lies". I've heard astronomers explain that space does not conduct electricity because it is a vacuum. Or that all plasma in space is neutral. They are not lying, it is just that sometimes they approximate, or misinformed.

"The red 'glow' you see in a hydrogen discharge tube is not due to ionization, though ionization is taking place in the tube"

So where do we see cosmic glows that are not due to plasmas (ie ionization)? The only place I can think of, is that due to reflected stellar light?

W.T."Tom" Bridgman said...

To Anonymous:

'Glows always indicate ionization' might qualify as an 'idea' in 1900, but not in 2014, where it's mostly wrong.

In science, there are ideas (practically a hunch), hypothesis (ideas formulated into a testable form) and theories (hypotheses that pass many comparisons to experiments). We have really good understanding of how atoms work at a fundamental level across a wide range of energies. It only becomes computationally difficult when exploring to total behavior of a large number of atoms.

If that were still true and our understanding of atoms were that primitive, computers would still be made with vacuum tubes. This correspondence would be taking place by snail-mail.

Consider the level of understanding of atoms and electrons required to make the semiconductor chips in the computer you're using. After the development of quantum mechanics, most of the discoveries behind solid state physics and much of materials science were predicted mathematically BEFORE they were found in the lab, in spite of the impression one gets from many press releases that imply the researchers were just randomly throwing stuff together: design of transistors, and other semiconductor devices, Bose-Einstein condensates, lasers.

Can't think of cosmic glows not due to ionization? Have you done any actual research on the topic? I have a number of processes listed in my Electric Comets (Electric Comets: Failures of the Electric Comet Model). Some in that list do include ionization, but many do not. Most of visible emission from comets is due reflection far from the Sun. Resonance fluorescence from solar photons occurs as the comet gets closer to the Sun (http://en.wikipedia.org/wiki/Resonance_fluorescence) which is excitation and re-emission between bound states. The X-ray emission from charge exchange we see is a *very* small fraction of energy compared to the visible emission. One of the earliest attempts to detect X-rays from comets was in the late 1970s (An Einstein search for X-ray emission from Comet Bradfield)) which was a negative result, at the limit of the theoretical predictions and instruments of the day.

If atoms are heated thermally with a mean thermal energy below ionization potential, bound states can be excited with little or no ionization. Some of these excitations will fall to ground states with visible light emission.

And of course your thinking does not include cases of ionization with NO glow, where the emitted photon of recombination has an energy above or below the visible range or a chosen sensor (IR, UV, X-ray). The solar wind is largely ionized, but the 'glow' of zodiacal light is largely *reflected* sunlight from dust and free electrons (Wikipedia: Thomson scattering).

As for being 'uncomfortable' when someone calls 'ideas' lies, I am not comfortable with people claiming their 'ideas' are facts when a relatively small amount of research would reveal the error IF they had bothered to look beyond crank science sites. Labeling already disproven science as an 'idea' as if it is really uncertain or undecided and still worthy of consideration is a common ploy in the pseudo-science community - creationists, flat-earthers, geocentrists, and the list goes on...

You might want to take more care in your research in the future.

Anonymous said...

Claiming 'ideas' are facts is bad science, no matter what side of the fence you are on.

I suspect that people don't look beyond what you call "crank science" sites, because they find it difficult to find the answers they are looking for, or, they see mainstream science sites promoting ideas to theories, as fact too.

W.T."Tom" Bridgman said...

To Anonymous,

"difficult to find the answers they are looking for"?

An oddly worded statement, more appropriate for philosophy or religion than science. It reads like you mean that they fail to find the answers they want - consistent with their *belief* system? This is a bad way to approach science (Pseudoscience & World-View). Similarly there's the silliness that that Big Bang is a 'creationist' cosmology.

Occasionally, some researcher has a 'worldview' that is convenient for solving a problem at hand, but those who continue to apply their 'worldview' in their research eventually run into a solid wall. Einstein's view of space and time served him well for relativity - but failed him totally for quantum mechanics. Fred Hoyle's ideas served well for the development of nuclear astrophysics - but failed miserably when applied to wider cosmological questions.

"they see mainstream science sites promoting ideas to theories, as fact too."

I suspect this really means "mainstream science PRESS sites" which will often use analogies and other less-precise language trying to explain a story.

Science is more than just a narrative. It is a narrative backed up by experiments and mathematics that can be used to predict future behavior and reconstruct past behavior of systems. In real science media sites, there's a lot of that material you don't actually see unless you are willing to spend the time to actually learn it. Yet that is the science that made things from computers to space flight possible.

For the crank science sites, what you see up front is pretty much all there actually is. They might slap in a few equations so they can say they've got math, but do they actually DO anything real with it? Consider how Electric Universe claimants have yet to demonstrate that their models can actually do better (or even equal to) the helio-environment models used to protect satellites & astronauts (Challenges for Electric Universe 'Theorists').

To take a recent story about an apparent shortage of lithium relative to the expected cosmic abundance (Elemental Mystery: Lithium Is Also Rare Outside Of The Milky Way). I would take the 'ideas' of professionals, who've actually paid attention to the methods and data, of possible solutions to the problem, over and above the ideas of the dozens of cranks who claim this is 'proof' that Big Bang cosmology is totally wrong and THEIR pet cosmology is true.